If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-16x-9=0
a = 3; b = -16; c = -9;
Δ = b2-4ac
Δ = -162-4·3·(-9)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{91}}{2*3}=\frac{16-2\sqrt{91}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{91}}{2*3}=\frac{16+2\sqrt{91}}{6} $
| -8(x+2)=6x+12/4 | | 5x^2+25x=1 | | 4(x+3)-2=8(1/2x+1) | | 3(7x-2)-2(3-4x)=5(x-5) | | -3(x+5)=6(x+5) | | -3.2x-4.3+3.5x=43.7 | | 3x2-9x+1=0 | | 18-12x=22-7x | | (3x-10)+(2x+65)=180 | | 25x-10x-60=0 | | 3(n+4)+4(n-8)=24n+36 | | 2(3x+x)-(5x-2)=12-2(6x-12) | | 4^4*x=16777216 | | 5x+6=2+3x+6 | | 3G+20=g-8 | | 4^x=16777216 | | 8^3x-4=4 | | (15x+10×12)÷(10+x)=14.8 | | 4^4x=16777216 | | (X)/(2)-(x)/(9)=3 | | 179=c+446 | | x/2-x/9=3 | | 5x^2-20+3x-6=0 | | 3x+8x+5=-6 | | -18r=-306 | | 2m/5=30 | | 4x*x*x-12x+12=0 | | 2-2b-2=3 | | P^2+q^2=1 | | 6(w−1)=6 | | -2-2b-2=3 | | -4=9x+26/7 |